The Monodromy of Real Bethe Vectors for the Gaudin Model

نویسنده

  • NOAH WHITE
چکیده

The Bethe algebras for the Gaudin model act on the multiplicity space of tensor products of irreducible glr-modules and have simple spectrum over real points. This fact is proved by Mukhin, Tarasov and Varchenko who also develop a relationship to Schubert intersections over real points. We use an extension to M0,n+1(R) of these Schubert intersections, constructed by Speyer, to calculate the monodromy of the spectrum of the Bethe algebras. We show this monodromy is described by the action of the cactus group Jn on tensor products of irreducible glr-crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c on d - m at / 9 90 83 26 v 1 2 4 A ug 1 99 9 Gaudin Hypothesis for the XY Z Spin Chain

The XY Z spin chain is considered in the framework of the generalized algebraic Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of the Bethe vectors is computed and expressed in the form of a Jacobian. This result corresponds to the Gaudin hypothesis for the XY Z spin chain.

متن کامل

v 2 4 S ep 1 99 9 Gaudin Hypothesis for the XY Z Spin Chain

The XY Z spin chain is considered in the framework of the generalized algebraic Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of the Bethe vectors is computed and expressed in the form of a Jacobian. This result corresponds to the Gaudin hypothesis for the XY Z spin chain.

متن کامل

ar X iv : c on d - m at / 9 90 83 26 v 3 2 N ov 1 99 9 Gaudin Hypothesis for the XY Z Spin Chain

The XY Z spin chain is considered in the framework of the generalized algebraic Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of the Bethe vectors is computed and expressed in the form of a Jacobian. This result corresponds to the Gaudin hypothesis for the XY Z spin chain.

متن کامل

Drinfeld Twists and Algebraic Bethe Ansatz of the Supersymmetric t-J Model

We construct the Drinfeld twists (factorizing F -matrices) for the supersymmetric t-J model. Working in the basis provided by the F -matrix (i.e. the so-called F -basis), we obtain completely symmetric representations of the monodromy matrix and the pseudo-particle creation operators of the model. These enable us to resolve the hierarchy of the nested Bethe vectors for the gl(2|1) invariant t-J...

متن کامل

Bethe Subalgebras in Hecke Algebra and Gaudin Models Bethe Subalgebras in Hecke Algebra and Gaudin Models

The generating function for elements of the Bethe subalgebra of Hecke algebra is constructed as Sklyanin's transfer-matrix operator for Hecke chain. We show that in a special classical limit q → 1 the Hamiltonians of the Gaudin model can be derived from the transfer-matrix operator of Hecke chain. We consruct a non-local analogue of the Gaudin Hamiltonians for the case of Hecke algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015